Mountains that move: Tracking Taiwan’s ever-changing landscape.
What happens when two virtual geomorphologists—one rooted in field observations, the other immersed in isotopic data—sit down to talk about Taiwan’s landscape?
You get a compelling exchange that spans from stormy days to deep geological time: from typhoon-triggered landslides to the slow uplift of mountains forged over millions of years. This is a distilled version of that conversation, revealing how tools attuned to different timescales help decode the story of one of Earth’s most rapidly evolving landscapes.
This deep dive has been AI-generated.
In Taiwan, mountains rise fast—and wear down just as fast. It’s one of the few places on Earth where geology plays out across all timescales in real time. Rivers swell with sediment after typhoons, landslides redraw hillsides overnight, and entire ranges grow and erode across millennia.
Here, the crust is forced upward by the relentless convergence of tectonic plates, while earthquakes strike with little warning, cracking open slopes and unleashing cascades of rock. Every seismic jolt can loosen a mountainside, turning solid rock into mobile debris. Water—whether falling from the sky or coursing through rivers—finds every weakness in the terrain, carving canyons, undermining cliffs, and flushing sediment to the sea.
To make sense of this complex interplay between uplift and erosion, geomorphologists deploy a diverse toolkit: sediment gauges to track the present, cosmogenic nuclides to measure change over millennia, and fission tracks in minerals to reveal the long arc of exhumation. Each method captures a different “heartbeat” of the landscape.
By weaving together these perspectives, Taiwan emerges not just as a tectonic hotspot, but as a living archive of Earth’s dynamic surface—sculpted by collision, shaken by quakes, scoured by storms, and shaped by time. It’s a landscape we are only just beginning to read in full.
Mt Yushan (3952 m) seen from the Eastern Peak (Nov. 2010)
Fission track analyses: Fuller et al. (2006) doi:10.1016/j.tecto.2006.05.018; Hsu et al. (2016) doi:10.1130/G37914.1; Lee et al. (2006) doi:10.1016/j.epsl.2006.09.047; Liu et al. (2001) EPSL, 186, 45-56; Messales et al. (2014) doi:10.1130/G35854.1; Resentini et al. (2020) doi: 10.1016/j.epsl.2020.116374; Willet et al. (2003), Geology v. 31(11), 945–948.
In situ 10Be: Carcaillet et al. (2017) doi: 10.1111/j.1365-3121.2007.00756.x; Chen et al. (2021) doi: 10.1016/j.epsl.2021.116874; Derrieux et al. (2014) doi: 0.1016/j.jseaes.2014.03.012; Fellin et al. (2017) doi: 0.1016/j.gloplacha.2017.07.012; Hebenstreit et al (2011) doi:10.1016/j.quascirev.2010.11.002; Hebenstreit et al. (2025) doi: 10.1002/jqs.3714; Schaller et al. (2005) doi: 10.1002/esp.1256; Siame et al. (2011) doi:10.1016/j.quageo.2010.11.003; Siame et al. (2012) doi:10.1016/j.jseaes.2012.02.002; Siame et al. (2007) doi:10.1016/j.quascirev.2007.04.016.
Meteoric 10Be: Lee et al. (1993) Geology, v. 21, p. 423-426; Deng et al. (2021) doi: 0.1016/j.quascirev.2021.107048; Deng et al. (2020) doi: 10.1029/2019JF005251; Deng et al. (2021) doi: 10.1029/2021JF006221; Deng et al. (2019) doi: 10.1016/j.epsl.2018.10.012; Tsai et al. (2008) doi: 10.1016/j.quaint.2007.06.007
Erosion: Dadson et al. (2003) Nature vol 426, 648-651; Fuller et al. (2003) doi: 0022-1376/2003/11101-0005$15.00; Garzanti et al. (2023) doi : 10.1016/j.earscirev.2023.104523; Higuchi et al. (2013) doi: 10.1016/j.catena.2012.11.005; Huang and Montgomery (2012) doi: 10.1016/j.geomorph.2012.07.004; ; Horn et al. (2012) doi:10.1029/2012GC004195; Lee et al. (2020) doi: 10.1016/j.catena.2020.104516; Li et al. (2005) doi: 10.1016/j.crte.2005.05.001; Liou et al. (2022) doi: 0.1186/s40645-022-00512-4; Resentini et al. (2017) doi:10.1002/2016JF004026; Tsou et al. (2014) doi: 10.1016/j.geomorph.2014.08.015.

Commentaires
Enregistrer un commentaire